Symmetry Groups of a Class of Spherical Folding Tilings

A. M. d’Azevedo Breda and Altino F. Santos

2008-2

PRÉ-PUBLICAÇÕES
Symmetry Groups of a Class of Spherical Folding Tilings

Ana M. d’Azevedo Breda Altino F. Santos

Department of Mathematics Department of Mathematics
University of Aveiro U.T.A.D.
3810 - 193 Aveiro 5001 - 801 Vila Real
Portugal Portugal
ambreda@mat.ua.pt afolgado@utad.pt

Abstract

We classify the group of symmetries of all dihedral folding tilings by spherical triangles and spherical parallelograms, obtained in [1, 2, 3]. The transitivity classes of isogonality and isohedrality are also determined, see Table 1.

2000 Mathematics Subject Classification. 52C20, 05B45, 20B35.

Keywords: dihedral tilings, isometric foldings, symmetry groups

1 Introduction

A spherical folding tiling, or f-tiling for short, is an edge-to-edge decomposition of the sphere by geodesic polygons, such that all vertices are of even valency and the sums of alternating angles around each vertex are \(\pi \). A f-tiling \(\tau \) is said dihedral if every tile of \(\tau \) is congruent to either two fixed sets \(T \) and \(Q \). In this case \(T \) and \(Q \) are the prototiles of \(\tau \).

F-tilings are related to the theory of isometric foldings of Riemannian manifolds. See [8] for the foundations of this subject.

Isometric foldings can be seen as locally isometries which send piecewise geodesic segments into piecewise geodesic segments of the same length. These maps being continuous are not necessarily differentiable. The points where they fail to be differentiable are called singular points. For surfaces, the singularity set gives rise to a two-coloured graph whose vertices fulfill the angle-folding relation, i.e., each vertex is of even valency and the sum of alternating angles is \(\pi \). For a topological view of this theory see [9].
In [7], Lawrence and Spingarn show that the angle-folding relation is generalized for isometric foldings of the euclidian space \mathbb{R}^d. Farran et al. [6] present a study which involves a partition of a surface into polygons.

A full range of problems and methods associated with tilings and patterns is presented by Grünbaum and Shephard, [12]. They address the problem of tiling two-dimensional space with congruent tiles in [13].

The complete classification of monohedral tilings of the sphere by triangles (which obviously includes the monohedral triangular f-tilings [4]) was given by Yukako Ueno and Yoshio Agaoka [11]. This classification was partially done by D. Sommerville [10], and an outline of the proof was provided by H. Davies [5].

The classification of all dihedral folding tilings by spherical triangles and spherical parallelograms was obtained in [1], [2] and [3].

Let τ denote a spherical f-tiling. A spherical isometry σ is a symmetry of τ if σ maps every tile of τ into a tile of τ. The set of all symmetries of τ is a group under composition of maps, denoted by $G(\tau)$. Here, we classify the group of symmetries of the refereed class of spherical f-tilings.

We shall say that the tiles T and T' of τ are in the same transitivity class if the symmetry group $G(\tau)$ contains a transformation that maps T into T'. If all the tiles of τ form one transitivity class we say that τ is tile-transitive or isohedral. If there are k transitivity classes of tiles, then τ is k-isohedral. On the other hand, if $G(\tau)$ contains operations that map every vertex of τ into any other vertex, then we say that the vertices form one transitivity class or that τ is isogonal. If there are k transitivity classes of vertices, then τ is k-isogonal. In this paper we also determine the transitivity classes of isogonality and isohedrality.

In Figure 1 we present a complete list of all dihedral f-tilings, whose prototiles are a spherical triangle T and a spherical parallelogram Q. A detailed study of the f-tilings is included in [1, 2, 3]. Only one element of each class or family is given. They consists of:

- A family of square antiprisms $(A_\alpha)_{\alpha \in [\alpha_0, \pi]}$, in which T is an isosceles triangle iff $\alpha \in \{\alpha_0, \frac{\pi}{3}\}$, where $\alpha_0 = \arccos(1 - \sqrt{2}) \approx 114.47^\circ$ and α is internal angle of Q;

- For each $k \geq 2$ a family of $2k$-polygonal radially elongated dipyramids, $\mathcal{R}_{\alpha_1 \alpha_2}^k$;

- A class of f-tilings \mathcal{I}^k ($k \geq 2$), in which Q is a square and T is a scalene triangle. We illustrate \mathcal{I}^2.

- A class of f-tilings \mathcal{J}^k ($k \geq 2$). Q is a spherical quadrangle with all congruent angles and with distinct pairs of congruent opposite sides. T is a scalene triangle. We consider $k = 2$.

2
• F-tilings U_i, $i = 1, 2, 3, 4$, with the same prototiles. Q has all congruent sides and distinct pairs of angles. T is an isosceles triangle (note: there exists one another element of the form $R_{\theta}^{\phi_1}$ with such prototiles);

• For each $k \geq 3$ a family of f-tilings M_{ϕ}^k ($\frac{\pi}{k} < \alpha < \frac{2\pi}{k}$), in which Q has distinct pairs of angles and T is a scalene triangle. In Figure we take the minimum value of k;

• Two classes of f-tilings E^k and S^{k-1} $(k \geq 3)$ such that Q has all congruent sides and distinguish pairs of angles and T is a scalene triangle. We illustrate E^3 and S^3;

• A class of f-tilings T^k $(k \geq 2)$ in which Q has distinct pairs of angles and distinct pairs of sides and T is scalene. We illustrate T^2;

• A f-tiling M such that Q has distinct pairs of angles and distinct pairs of sides and T is scalene.

2 Preliminaries

It is well known that any spherical isometry is either a reflection a rotation or a glide-reflection, which consists of reflecting through some spherical great circle and then rotating around the line orthogonal to the great circle and containing the origin.

The following trivial Lemma is a matter of a great import on what follows.

Lemma 2.1. Let v and v' be vertices of a spherical f-tiling τ, and let σ be a symmetry of τ, such that $\sigma(v) = v'$. Then, every symmetry of τ that sends v into v' is composition of σ with a symmetry of τ fixing v'.

On the other hand, the isometries that fix v' are exactly the rotations around the line containing $\pm v'$ and the reflections through the great circles by $\pm v'$.

On what follows R_{θ}^x, R_{θ}^y and R_{θ}^z denote the rotations through an angle θ around the xx axis, yy axis and zz axis, respectively. The reflections on the coordinate planes xy, xz and yz are denoted, respectively, by ρ^y, ρ^z and ρ^x. It follows that:

$$R_{\theta}^x \rho^y = \rho^y R_{\theta}^x, \quad R_{\theta}^y R_{\theta}^x = R_{\theta}^x R_{\theta}^y, \quad \rho^y R_{\theta}^x = R_{\theta}^x \rho^y \quad \text{and} \quad \rho^z \rho^y = \rho^y \rho^z = R_{\theta}^y.$$

Besides, $2k$ is the smallest positive integer such that $(\rho^y R_{\theta}^x)^{2k} = id.$
The nth dihedral group D_n (group of symmetries of the planar regular n-gon) consists of n rotations and n symmetries (reflections). If a is a rotation of order n and b is a symmetry, then $\langle a, b : a^n = 1, b^2 = 1, ba = a^{n-1}b \rangle$ is a group presentation for D_n. Moreover, the elements $1, a, \ldots, a^{n-1}, b, ab, \ldots, a^{n-1}b$ are pairwise disjoints.

3 Symmetry Groups

Here we determine the group of symmetries of the mentioned class of spherical tilings. The number of transitivity classes of tiles and vertices of each tiling is indicated. We consider separately the families involved in Figure 1.

Antiprisms \mathcal{A}_α

Described in [1]

In Figure 2 are illustrated some antiprisms \mathcal{A}_α, $\arccos(1 - \sqrt{2}) = \alpha_0 \leq \alpha < \pi$,
where α is the internal angle of the spherical square Q.

$$\alpha$$

Figure 2: Square antiprisms.

Firstly, suppose that $\alpha_0 < \alpha < \pi$. If $\alpha = \frac{2\pi}{3}$ (Figure 2-III), then the prototile T is an isosceles triangle. If $\alpha \neq \frac{2\pi}{3}$ (Figure 2-II and Figure 2-IV), then T is scalene. In any case we observe that the unique symmetry of A_α fixing a vertex v of the tiling must be the identity map. By Lemma 2.1, $G(A_\alpha)$ contains at most 8 symmetries.

However, $<R_{\frac{\pi}{2}}>\text{ is a subgroup of } G(A_\alpha)\text{ of order 4. On the other hand, the rotation } R_{\frac{\pi}{2}} \in G(A_\alpha) \setminus <R_{\frac{\pi}{2}}>\text{. And so } G(A_\alpha)\text{ has exactly 8 elements.}$

Now, if $a = R_{\frac{\pi}{2}}$ and $b = R_{\frac{\pi}{2}}$ then $a^4 = 1$, $b^2 = 1$ and $a^3 b = ba$, where 1 is the identity element. And so $G(A_\alpha)$ is isomorphic to the octic group D_4. Since all the vertices of A_α form one transitivity class then A_α is isogonal. On the other hand, A_α is 2-isohedral.

Consider now $\alpha = \alpha_0$. The prototile T is an isosceles triangle of angles $\frac{\pi}{2}$, $\pi - \alpha_0$ and $\frac{\pi}{2}$ as illustrated in Figure 2-I. The symmetries of A_{α_0} that fix a vertex v belonging to a certain tile Q of the tiling is either the identity map or the reflection through the unique great circle containing v and the other vertex of Q opposite to v. By Lemma 2.1, $G(A_{\alpha_0})$ contains at most 16 symmetries.

Similarly to the previous case $G(A_{\alpha_0})$ contains a subgroup S isomorphic to D_4, generated by $R_{\frac{\pi}{2}}$ and $R_{\frac{\pi}{2}}$. On the other hand, $\phi = \rho^{\frac{\pi}{2}} R_{\frac{\pi}{2}} = R_{\frac{\pi}{2}} \rho^{\frac{\pi}{2}}$ obtained by reflecting on the plane yz followed by a rotation of $\frac{\pi}{4}$ around the xx axis is also a symmetry of A_{α_0}. Since ϕ has order 8, then $\phi \not\in S$ (otherwise S would be abelian). It follows that $\{a \phi : a \in S\}$ and S are disjoint, and so $G = G(A_{\alpha_0})$ has exactly 16 elements. Now, one has

$$\phi^7 R_{\frac{\pi}{2}} = \rho^{\frac{\pi}{2}} R_{\frac{\pi}{2}} R_{\frac{\pi}{2}} = \rho^{\frac{\pi}{2}} R_{\frac{\pi}{2}} \rho^{\frac{\pi}{2}} \rho^{\frac{\pi}{2}} = \rho^{\frac{\pi}{2}} \rho^{\frac{\pi}{2}} R_{\frac{\pi}{2}} \rho^{\frac{\pi}{2}} = R_{\frac{\pi}{2}} R_{\frac{\pi}{2}} \rho^{\frac{\pi}{2}} = R_{\frac{\pi}{2}} \phi,$$

and so G is isomorphic to D_8, generated by ϕ and $R_{\frac{\pi}{2}}$. Finally, A_{α_0} is isogonal and 2-isohedral.

$I^k, J^k, \; k \geq 2$ - Described in [1]

The f-tiling I^k ($k \geq 2$) contains 2 spherical squares and $8(2k - 1)$ triangles, see Figure 3.
Similarly to the previous case $G(\mathcal{I}^k)$ contains a subgroup of order 8 generated by $R_{\frac{\pi}{2}}$ and $R_{\frac{\pi}{n}}$.

Now, the cyclic sequence of angles around a vertex v belonging to the quadrangle contains $2k - 1$ angles δ, and it is given by $(\alpha, \delta, \ldots, \delta, \gamma, \beta)$. As the transitivity classes of the triangles with angle δ in v are pairwise disjoints, then $G(\mathcal{I}^k)$ has no more elements.

And so, up to an isomorphism, $G(\mathcal{I}^k)$ is the 4th dihedral group. It follows that there are $2k - 1$ transitivity classes of triangles (each one with 8 triangles) and one transitivity class of quadrangles. Hence \mathcal{I}^k is $2k$-isohedral. Finally, \mathcal{I}^k is k-isogonal.

Concerning to the f-tilings \mathcal{J}^k ($k \geq 2$), the triangles numbered from 1 to $2k$ ($k = 2$ in Figure 3) are in distinct transitivity classes of tiles. On the other hand, the spherical isometries $1 = Id, R_{\frac{\pi}{n}}, R_{\frac{\pi}{n}}$ and $R_{\frac{\pi}{n}}$ are symmetries of \mathcal{J}^k. Since, \mathcal{J}^k is composed of $8k$ triangles, then $G(\mathcal{J}^k)$ has no more elements. Up to an isomorphism, $G(\mathcal{J}^k)$ is the Klein 4-group. \mathcal{J}^k is $(2k + 1)$-isohedral and $(k + 1)$-isogonal.

$\mathcal{R}^k_{\alpha_1 \alpha_2}, \ k \geq 2$ - Described in [1], [2] and [3]

Firstly, consider the case when the prototile Q is equiangular. A 3D representation for $k = 4$ is illustrated in Figure 4-I. Let α be the internal angle of Q.

Any symmetry of \mathcal{R}^k_α fixes $(0, 0, 1)$ or maps $(0, 0, 1)$ into $(0, 0, -1)$. The symmetries that fix $(0, 0, 1)$ are generated, for instance, by the rotation $R_{\frac{\pi}{2}}$ of order $2k$ and the reflection ρ^{yz}, giving rise to a subgroup S of $G(\mathcal{R}^k_\alpha)$ isomorphic to D_{2k}. To obtain the symmetries that sends $(0, 0, 1)$ into $(0, 0, -1)$ it is enough to compose each element of S with ρ^{xy}. Now, since ρ^{xy} commutes with $R_{\frac{\pi}{2}}$ and ρ^{yz}, then ρ^{xy} commutes with all elements of S. And so, the map defined by $\psi \mapsto (0, \psi)$ and $\rho^{xy} \psi \mapsto (1, \psi)$, $\psi \in S$ is an isomorphism between $G(\mathcal{R}^k_\alpha)$ and $D_1 \times D_{2k}$. It follows immediately that \mathcal{R}^k_α is 2-isohedral and 2-isogonal.

Consider now that Q has distinct pairs of congruent opposite angles, say α_1
and \(\alpha_2 \). A 3D representation for \(k = 4 \) is illustrated in Figure 4-II.

In this case the group of symmetries that fix \((0, 0, 1)\) is precisely the \(k \)th dihedral group \(D_k \) generated by \(R^{z\pi}_z \) and \(\rho^{y\pi} \). In fact, neither the reflections on the vertical great circles bisecting triangles nor the rotations of the form \(R^{z(2n+1)\pi}_z \) \((n \in \mathbb{Z})\) are symmetries of \(R^{k\alpha_1\alpha_2}_k \).

The map \(a = R^{z\pi}_z \rho^{y\pi} = \rho^{y\pi} R^{z\pi}_z \) is a symmetry of \(R^{k\alpha_1\alpha_2}_k \) that maps \((0, 0, 1)\) into \((0, 0, -1)\) allowing us to get the symmetries that map \((0, 0, 1)\) into \((0, 0, -1)\). Now, one has

\[
a^{2k-1} \rho^{y\pi} = R^{z\pi}_{(2k-1)\pi} \rho^{y\pi} \rho^{y\pi} = R^{z\pi}_{(2k-1)\pi} R^{y\pi}_y = R^{y\pi}_y R^{z\pi}_z = \rho^{y\pi} \rho^{y\pi} R^{z\pi}_z = \rho^{y\pi} a.
\]

On the other hand, \(a \) has order \(2k \) and \(\rho^{y\pi} \notin \langle a \rangle \). It follows that \(a \) and \(\rho^{y\pi} \) generate \(G(R^{k\alpha_1\alpha_2}_k) \). And so it is isomorphic to \(D_{2k} \). Finally, \(R^{k\alpha_1\alpha_2}_k \) has two transitivity classes of tiles and three transitivity classes of vertices, which means that \(R^{k\alpha_1\alpha_2}_k \) is 2-isohedral and 3-isogonal.

\(S^k \), \(k \geq 2 \) and \(E^k \), \(k \geq 3 \) - Described in [2]

Firstly, consider the tilings \(S^k \), \(k \geq 2 \). A 3D representation for \(k = 3 \) is illustrated in Figure 5-I.

Any symmetry of \(S^k \) fixes \((1, 0, 0)\) or maps \((1, 0, 0)\) into \((-1, 0, 0)\). The symmetries that fix \((1, 0, 0)\) are generated by the rotation \(R^z_z \) and the reflection \(\rho^{y\pi} \), giving rise to \(D_{2k} \). The symmetries that maps \((1, 0, 0)\) into \((-1, 0, 0)\) are obtained composing each one of these elements with \(\rho^{y\pi} \). Since \(\rho^{y\pi} \) commutes with \(R^z_z \) and \(\rho^{y\pi} \), we conclude that \(G(S^k) \) is isomorphic to \(D_1 \times D_{2k} \). It follows immediately that \(S^k \) is 2-isohedral and 4-isogonal.

Now, we shall consider the tilings \(E^k \), \(k \geq 3 \). A 3D representation for \(k = 4 \) is illustrated in Figure 5-II. \(E^k \) has exactly four vertices surrounded by the cyclic sequence \((\gamma, \gamma, \alpha_2, \alpha_2, \alpha_2, \ldots)\). Namely, \((1, 0, 0), (0, 0, 1), (-1, 0, 0)\) and \((0, 0, -1)\).
The isometries ρ^{xy}, ρ^{yz}, ρ^{xy} and ρ^{yz} are the non-identity symmetries of \mathcal{E}^k that leave fixed $(1,0,0)$, $(0,0,1)$, $(-1,0,0)$ and $(0,0,-1)$, respectively. On the other hand, the isometries $\rho^{xz} R^y_\pi$, ρ^{yz} and $\rho^{xz} R^y_\pi$ are symmetries of \mathcal{E}^k that map $(1,0,0)$ into $(0,0,1)$, $(-1,0,0)$ and $(0,0,-1)$, respectively. By Lemma 2.1 $G(\mathcal{E}^k)$ has exactly eight isometries: id, ρ^{xy}, $\rho^{xz} R^y_\pi$, ρ^{yz}, $\rho^{xy} \rho^{yz}$, $\rho^{xz} R^y_\pi$ and $\rho^{yz} \rho^{xz} R^y_\pi$.

It is a straightforward exercise to show that $G(\mathcal{E}^k)$ is isomorphic to D_4 and it is generated by $\rho^{xz} R^y_\pi$ and ρ^{xy}.

There are $k - 2$ transitivity classes of quadrangles with 8 elements and one class with 4 elements. Concerning to triangles, one gets $2k-3$ transitivity classes, each one contains 8 elements. Hence \mathcal{E}^k is $(3k - 4)$ - isohedral.

The vertices surrounded by the cyclic sequence $(\gamma, \gamma, \alpha_2, \alpha_2, \ldots)$ are in the same transitivity class. The vertices enclosed by $(\alpha_2, \gamma, \gamma, \alpha_2, \gamma)$ form $k - 2$ transitivity classes, each one with 4 vertices. Related to the vertices $(\alpha_1, \alpha_1, \delta, \delta)$ one obtain $k - 1$ transitivity classes, one of them has 4 vertices and $k - 2$ classes have 8 vertices. Finally, the vertices surrounded by $(\beta, \beta, \beta, \beta)$ are in $k - 1$ distinct transitivity classes, one of them has 2 vertices and the remaining classes have 4 vertices. And so, \mathcal{E}^k is $1 + (k - 2) + (k - 1) + (k - 1) = (3k - 3)$ - isogonal.

$\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$ - Described in [2] and \mathcal{M} - Described in [3]

The prototiles of \mathcal{G}_i ($i = 1, 2, 3$) are a spherical rhombus with pairs of opposite angles $(\alpha_1, \alpha_2) = (\frac{2\pi}{3}, \frac{2\pi}{3})$ and a spherical triangle with angles $(\beta, \gamma, \delta) = (\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{3})$. 3D representations are illustrated in Figure 6.

The reflections ρ^{xy}, ρ^{xz} and ρ^{yz} are symmetries of \mathcal{G}_1. On the other hand, for a rhombus Q in the first octant, the unique symmetry that leaves Q in the first octant is the identity map. And so $G(\mathcal{G}_1)$ is generated by ρ^{xy}, ρ^{xz} and ρ^{yz}. It follows that $G(\mathcal{G}_1)$ is isomorphic to $D_1 \times D_1 \times D_1$.

Figure 5: f-tilings S^3 and E^4.

![Figure 5](image_url)
Figure 6: f-tilings G_1, G_2, G_3 and M.

Now, there are 2 transitivity classes of rhombus and 7 transitivity classes of triangles. Hence G_1 is 9-isohedral. On the other hand, numbering the vertices of the first octant, we conclude that G_1 is 11-isogonal.

Consider now the tiling G_2. Here we must observe that the cyclic sequence $(\gamma, \gamma, \gamma, \gamma, \gamma, \gamma)$ encloses exactly two vertices: $(0, 0, 1)$ and $(0, 0, -1)$. Similarly to the case considered in $R_{\alpha_1 \alpha_2}$ (with $k = 3$), it can be seen that $G(G_2)$ is isomorphic to D_6, generated by $\rho^{x\gamma} R_{\gamma}^z$ and $\rho^{y\gamma}$.

One gets two transitivity classes of rhombi. The identification is done in Figure 6 (rhombi labelled by 1 and 2). Representative elements of transitivity classes of triangles are labelled by a, b, c and d, with 12 triangles each transitivity class. Therefore $G(G_2)$ is 6-isohedral. Concerning to vertices, it can be seen that $G(G_2)$ is 7-isogonal.

Finally, using similar procedures, we conclude that $G(G_3)$ is isomorphic to D_{10}, generated by $\rho^{x\gamma} R_{\gamma}^z$ and $\rho^{y\gamma}$. The tiling M (Figure 6 on the right) is obtained by deleting a pair of opposite sides of the prototile Q of G_3 and preserving the angle folding relation. Moreover, $G(M) = G(G_3)$. It follows that G_3 is 5-isohedral and 6-isogonal while M is 4-isohedral and 5-isogonal.

U_1, U_2, U_3 and U_4 - Described in [2]

The angles of the prototiles Q and T of the tilings U_i ($i = 1, 2, 3, 4$) are $(\alpha_1, \alpha_2) = (\frac{2\pi}{3}, \frac{\pi}{2})$ and $(\beta, \gamma, \gamma) = (\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{3})$. Bisecting the rhombus Q by α_1 one gets two triangles congruent to T. In Figure 7 3D representations are illustrated (we have chosen these positions since they fit better our purposes).

The tiling U_1 has exactly two vertices (v and v') surrounded by the cyclic sequence $(\gamma, \gamma, \gamma, \gamma, \gamma, \gamma)$. Now, the symmetries of U_1 that fix v (and v') are the identity map and the reflection $\rho^{y\gamma}$. On the other hand, $\rho^{x\gamma}$ is a symmetry of U_1 sending v into v'. By Lemma 2.1 $G(U_1)$ has exactly four elements. It follows immediately that $G(U_1)$ is isomorphic to the Klein 4-group.

There are two transitivity classes of quadrangles (1 and 2) and four transitivity classes of triangles (a, b, c and d). Hence U_1 is 6-isohedral. Besides, U_1 is 6-isogonal.
Consider the tiling U_2. The vertices of U_2 surrounded by $(\alpha_2, \beta, \alpha_2, \beta_1)$ are $(0, 0, 1)$ and $(0, 0, -1)$; besides, the symmetries of U_2 that fix these vertices are id, ρ^{yz}, ρ^{xz} and $R^+ = \rho^{yz} \rho^{xz}$. Now, $\rho^{xy} R^+_{\pi} \rho^{yz}$ is a symmetry of U_2 mapping $(0, 0, 1)$ into $(0, 0, -1)$. It follows that $G(U_2)$ is isomorphic to D_4, generated by $\rho^{xy} R^+_{\pi}$ and ρ^{yz}. U_2 is 4-isohedral (the identifications are made in Figure) and 3-isogonal.

Taking in account the type of vertices of the tiling U_3, we observe that any symmetry of U_3 must fix $(0, 0, 1)$. Among the rotations, with this property, we have the maps $id, R^+_{\pi}, R^+_{\alpha}$ and $R^+_{2\pi}$; concerning to reflections we have the maps $\rho^{yz}, \rho^{xz}, \rho^{yz} R^+_{\pi}$ and $\rho^{yz} R^+_{2\pi}$. Up to an isomorphism, $G(U_3) = D_4$. It is generated by R^+_{π} and ρ^{yz}. U_3 is 5-isogonal and 4-isohedral.

Finally, using similar procedures to the ones considered in the tilings of the form R^k_{α} (with $k = 2$), we conclude that $G(U_4)$ is isomorphic to $D_1 \times D_2$. Besides, U_4 is 2-isohedral and 3-isogonal.

$$\mathcal{M}_{\alpha_1}^{k_1}, k_1 \geq 3 \quad \text{Described in [2] and [3]}$$

$$\mathcal{D}_{\beta}^{k_2}, k_2 \geq 1 \quad \text{Described in [3]}$$

$$\mathcal{T}^{k_3}, k_3 \geq 2 \quad \text{Described in [3]}$$

In Figure 8 are illustrated 3D representations of $\mathcal{M}_{\alpha_1}^{k_1}, \mathcal{D}_{\beta}^{k_2}$ and \mathcal{T}^{k_3}, for some α_1 and β_1. A similar study to the one used in the tilings $R^k_{\alpha_1\alpha_2}$ shows that $G(\mathcal{M}_{\alpha_1})$ is isomorphic to D_{2k}. $\mathcal{M}_{\alpha_2}^{k_2}$ is 3-isohedral and 4-isogonal.

The prototiles of $\mathcal{D}_{\beta}^{k_2}$ are an isosceles triangle of angles (β, γ, γ), with $\gamma = \frac{\pi}{2}$, and a spherical parallelogram of distinct pairs of opposite angles, (α_1, α_2), with $\alpha_2 = \frac{\pi}{2}$ and $\alpha_1 + k_2 = \pi$. $\mathcal{D}_{\beta}^{k_2}$ is composed of four quadrangles and $8k_2$ triangles. In Figure 8 a 3D representation for $k_2 = 2$ is illustrated, as mentioned before.

It is a straightforward exercise to show that any symmetry of $\mathcal{D}_{\beta}^{k_2}$ fixes $(0, 0, 1)$ or maps $(0, 0, 1)$ into $(0, 0, -1)$. $G(\mathcal{D}_{\beta}^{k_2})$ contains exactly four symmetries fixing $(0, 0, 1)$. Namely id, ρ^{yz}, ρ^{xz} and R^+_{π}. The spherical isometry $\phi = R^+_{\alpha} R^+_{\beta}$, explicitly defined by $\phi(x, y, z) = (-y, -x, -z)$, is a symmetry of $\mathcal{D}_{\beta}^{k_2}$ sending $(0, 0, 1)$ into $(0, 0, -1)$. By Lemma 2.1 $G(\mathcal{D}_{\beta}^{k_2})$ has 8 elements. Since $\phi^4 = id$, $(\rho^{yz})^2 = id$ and

![Figure 7: f-tilings U_1, U_2, U_3, and U_4.](image-url)
\(\rho^{yz} \phi = \phi^3 \rho^{yz} \), then \(G(\mathcal{D}_\beta^k) \) is isomorphic to \(D_4 \). Finally, there are \(k \) transitivity classes of triangles and one transitivity class of quadrangles. And so \(\mathcal{D}_\beta^k \) is \(k + 1 \)-isoedral. Besides, \(\mathcal{D}_\beta^k \) is \(k + 2 \)-isogonal (the vertices surrounded by \((\gamma, \gamma, \gamma, \gamma)\)) are distributed by \(k \) transitivity classes).

Finally, we shall consider the tilings \(\mathcal{T}^k \), \(k \geq 2 \). In Figure 8 a 3D representation for \(k = 2 \) is illustrated. \(\mathcal{T}^k \) has exactly four vertices (in bold) surrounded by the cyclic sequence \((\alpha_1, \alpha_1, \delta, \delta, \ldots, \delta)\) \((\delta \text{ appears } 2k \text{ times})\). The unique symmetry of \(\mathcal{T}^k \) fixing one of these vertices is the identity map. By Lemma 2.1 \(G(\mathcal{T}^k) \) contains at most 4 symmetries. However, the isometries \(id, R_x^\pi, R_y^\pi \) and \(R_z^\pi = R_x^\pi R_y^\pi \) are symmetries of \(\mathcal{T}^k \). It follows straightforward that \(G(\mathcal{T}^k) \) is isomorphic to the Klein 4-group. \(\mathcal{T}^k \) has \(2k + 2 \) transitivity classes of quadrangles (each one has two elements) and \(2k \) transitivity classes of triangles (each one with four elements). Therefore \(\mathcal{T}^k \) is \(4k + 2 \)-isoedral. Besides, \(\mathcal{T}^k \) is \(2k + 2 \)-isogonal.

We have proved the following result:

Proposition 3.1. The symmetry groups of the dihedral f-tilings by spherical triangles and spherical parallelograms are dihedral groups or direct products of dihedral groups as indicated in Table 1. The index of isogonality and isoedrality is also disclosed.

Acknowledgements

UI&D Matemática e Aplicações of University of Aveiro.
Research Unit CM–UTAD of University of Trás-os-Montes e Alto Douro.
Table 1: Group of Symmetries and Transitivity Classes

<table>
<thead>
<tr>
<th>F-Tiling</th>
<th>Symmetry Group</th>
<th>isohedrality-classes</th>
<th>isogonality-classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{α_0}</td>
<td>D_8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$A_{\alpha}, \alpha \neq \alpha_0$</td>
<td>D_4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$I^k, k \geq 2$</td>
<td>D_4</td>
<td>$2k$</td>
<td>k</td>
</tr>
<tr>
<td>$J^k, k \geq 2$</td>
<td>$D_1 \times D_1$</td>
<td>$2k+1$</td>
<td>$k+1$</td>
</tr>
<tr>
<td>$E^k R_{\alpha_0}^k, k \geq 2$</td>
<td>$D_1 \times D_{2k}$</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$*R_{\alpha_0}^k, k \geq 2$</td>
<td>D_{2k}</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$S^k, k \geq 2$</td>
<td>$D_1 \times D_{2k}$</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$E^k, k \geq 3$</td>
<td>D_4</td>
<td>$3k-4$</td>
<td>$3k-3$</td>
</tr>
<tr>
<td>G_1</td>
<td>$D_1 \times D_1 \times D_1$</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>G_2</td>
<td>D_6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>G_3</td>
<td>D_{10}</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>M</td>
<td>D_{10}</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>U_1</td>
<td>$D_1 \times D_1$</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>U_2</td>
<td>D_4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>U_3</td>
<td>D_4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>U_4</td>
<td>D_4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$M_{\alpha_0}^k, k \geq 3$</td>
<td>D_{2k}</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$D_{\beta}^k, k \geq 1$</td>
<td>D_4</td>
<td>$k+1$</td>
<td>$k+2$</td>
</tr>
<tr>
<td>$T^k, k \geq 2$</td>
<td>$D_1 \times D_1$</td>
<td>$4k+2$</td>
<td>$2k+2$</td>
</tr>
</tbody>
</table>

References

